Aerodyne Aerosol Mass Spectrometer (Q-AMS)

Q-AMS: Original configuration (upper left: Hohenpeißenberg during HAZE, lower right: engine test facility), and two-rack aircraft configuration (upper right: Puerto Rico during RICO-PRACS, lower left: in Falcon during PAZI). Pictures: J. Schneider.

The quadrupole version of the Aerosol Mass Spectrometer (Q-AMS) was developed by Aerodyne Research Inc, Massachusetts, and is described in detail in Jayne et al. (2000), Jimenez et al. (2003), and Canagaratna et al. (2007). The instrument has been designed to provide real-time quantitative information on size-resolved mass loadings for volatile and semi-volatile molecular components present in/on ambient aerosol particles. Unlike laser-desorption/ionization instruments that provide a qualitative or semi-quantitative picture of the full chemical composition of individual particles, the AMS is designed to provide quantitative composition information on ensembles of particles, with limited single particle information.

The AMS consists of three main parts: an aerosol inlet, a particle sizing chamber, and a particle composition detection section. The different sections are separated by small apertures and differentially pumped. The aerosol inlet contains an aerodynamic lens that focuses the particles into a narrow beam (~ 1 mm diameter). The particle size range is approximately 30 to 1000 nm. Size-dependent particle velocities created by expansion into vacuum are used to determine particle size through a particle time-of-flight measurement. The focused particle beam is modulated by a rotating wheel chopper operating at about 100 Hz with a ~2% duty cycle. Time-resolved particle detection after a known flight distance gives the particle velocity from which the vacuum-aerodynamic diameter of the particles is obtained. Detection is performed by directing the particle beam onto a resistively heated roughened surface under high vacuum (~ 10-7 Torr). Upon impaction, the volatile and semi-volatile components in/on the particles flash vaporize. The vaporization source is integrally coupled to an electron impact ionizer at the entrance of a quadrupole mass spectrometer. When the quadrupole is tuned to a representative mass, bursts of ions are produced that are averaged to produce a size-resolved mass distribution. More info: Visit the mass spectrometry pages by Jose Jimenez

We purchased the Q-AMS in 2001, and the first field deployments were during MINOS (2001) and HAZE (2002). In 2003 we reconfigured the instrument for aircraft use (PAZI), but also for all following projects we used the two-aircraft-rack configuration. In 2007 we upgraded the Q-AMS to a C-ToF-AMS.


Jayne, J. T., D. C. Leard, X. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop, Development of an aerosol mass spectrometer for size and composition analysis of submicron particles, Aerosol. Sci. Technol., 33, 49-70, 2000.

Jimenez, J.L., J.T. Jayne, Q. Shi, C.E. Kolb, D.R. Worsnop, I. Yourshaw, J.H. Seinfeld, R.C. Flagan, X. Zhang, K.A. Smith, J. Morris, and P. Davidovits, Ambient Aerosol Sampling with an Aerosol Mass Spectrometer. J. Geophys. Res. - Atmospheres, 108(D7), 8425, doi:10.1029/2001JD001213, 2003.

Canagaratna, M.R., J.T. Jayne, J.L. Jimenez, J.D. Allan, M.R. Alfarra, Q. Zhang, T.B. Onasch, F. Drewnick, H. Coe, A. Middlebrook, A. Delia, L.R. Williams, A.M. Trimborn, M.J. Northway, P.F. DeCarlo, C.E. Kolb, P. Davidovits, D.R. Worsnop, Chemical and Microphysical Characterization of Ambient Aerosols with the Aerodyne Aerosol Mass Spectrometer, Mass Spectrometry Reviews, 26, 185- 222, 2007.


Selected publications of our group using Q-AMS data:

Dusek, U, G. P. Frank, J. Curtius, F. Drewnick, J. Schneider, A. Kürten, D. Rose, M. O. Andreae, S. Borrmann, and U. Pöschl, Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events, Geophys. Res. Lett., 37, L03804,, 2010.

Henning, S., H. Wex, T. Hennig, A. Kiselev, J. Snider, D. Rose, U. Dusek, G. P. Frank, U. Pöschl, A. Kristensson, M. Bilde, R. Tillmann, A. Kiendler-Scharr, Th. F. Mentel, S. Walter, J. Schneider, C. Wennrich, and F. Stratmann, Soluble mass, hygroscopic growth and droplet activation of coated soot particles during LExNo,
J. Geophys. Res., 115, D11206,
doi:10.1029/2009JD012626, 2010.

Schneider, J., U. Kirchner, S. Borrmann, R. Vogt, and V. Scheer, In situ measurements of particle number concentration, chemically resolved size distributions, and black carbon content of traffic related emissions on German motorways, rural roads, and in city traffic, Atmospheric Environment, 42, 4257-4268, 2008.

Hock, N., J. Schneider, S. Borrmann, A. Römpp, G. Moortgat, T. Franze, C. Schauer, U. Pöschl, C. Plass-Dülmer, and H. Berresheim, Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002), Atmos. Chem. Phys., 8, 603-623, 2008.

Allan, J. D, D. Baumgardner, G. B. Raga, O. L. Mayol-Bracero, F. Morales-García, F. García-García, G. Montero-Martínez, S. Borrmann, J. Schneider, S. Mertes, S. Walter, M. Gysel, U. Dusek, G. P. Frank, and M. Krämer, Clouds and Aerosols in Puerto Rico - a new Evaluation, Atmos. Chem. Phys., 8, 1293-1309, 2008.

J.L. Jimenez, M.R. Canagaratna, N.M. Donahue, A.S.H. Prevot, Q. Zhang, J.H. Kroll, P.F. DeCarlo, J.D. Allan, H. Coe, N.L. Ng, A.C. Aiken, K.D. Docherty, I.M. Ulbrich, A.P. Grieshop, A.L. Robinson, J. Duplissy, J. D. Smith, K.R. Wilson, V.A. Lanz, C. Hueglin, Y.L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J.M. Tomlinson, D.R. Collins, M.J. Cubison , E.J. Dunlea, J.A. Huffman, T.B. Onasch, M.R. Alfarra, P.I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J.Y Sun, Y.M. Zhang, K. Dzepina, J.R. Kimmel, D. Sueper, J.T. Jayne, S.C. Herndon, A.M. Trimborn, L.R. Williams, E.C. Wood, C.E. Kolb, A.M. Middlebrook, U. Baltensperger, and D.R. Worsnop, Evolution of Organic Aerosols in the Atmosphere, Science, 326, 1525-1529, 2009.
doi: 10.1126/science.1180353.

Zhang, Q.; Jimenez, J. L.; Canagaratna, M. R.; Allan, J. D.; Coe, H.; Ulbrich, I.; Alfarra, M. R.; Takami, A.; Middlebrook, A. M.; Sun, Y. L.; Dzepina, K.; Dunlea, E.; Docherty, K.; DeCarlo, P. F.; Salcedo, D.; Onasch, T.; Jayne, J. T.; Miyoshi, T.; Shimono, A.; Hatakeyama, S.; Takegawa, N.; Kondo, Y.; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Williams, P.; Bower, K.; Bahreini, R.; Cottrell, L.; Griffin, R. J.; Rautiainen, J.; Sun, J. Y.; Zhang, Y. M.; Worsnop, D. R., Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., Vol. 34, No. 13, L13801, 2007. doi: 10.1029/2007GL029979

Mertes, S., B. Verheggen, S. Walter, P. Connolly, M. Ebert, J. Schneider, K.N. Bower, M. Inerle-Hof, J. Cozic, U. Baltensperger and E. Weingartner, Counterflow virtual impactor based collection of small ice particles in mixed-phase clouds for the physico-chemical characterization of tropospheric ice nuclei: sampler description and first case study, Aerosol Sci. Technol., 41, 848-864, 2007. doi: 10.1080/02786820701501881

Hings, S. S., S. Walter, J. Schneider, S. Borrmann, and F. Drewnick, Comparison of a Quadrupole and a Time-of-Flight Aerosol Mass Spectrometer during the Feldberg Aerosol Characterization Experiment 2004, Aerosol Sci. Technol., 41, 679 - 691, 2007. doi: 10.1080/02786820701408483

Drewnick, F. , J. Schneider, S. S. Hings, N. Hock, K. Noone, A. Targino, S. Weimer, and S. Borrmann, Measurement of Ambient, Interstitial, and Residual Aerosol Particles on a Mountain-top Site in Central Sweden using an Aerosol Mass Spectrometer and a CVI. J. Atm. Chem., 56, 1-20, 2007, doi: 10.1007/s10874-006-9036-8.

Schneider, J., S. S. Hings, B. N. Hock, S. Weimer, S. Borrmann, M. Fiebig, A. Petzold, R. Busen, and B. Kärcher, Aircraft-based operation of an aerosol mass spectrometer: Measurements of tropospheric aerosol composition, J. Aerosol Sci., 37, 839-857, 2006, doi: 10.1016/j.jaerosci.2005.07.002.

Schneider, J., N. Hock, S. Weimer, S. Borrmann, U. Kirchner, R. Vogt, V. Scheer, Nucleation particles in Diesel exhaust: Composition inferred from in-situ mass spectrometric analysis, Environ. Sci. Technol., 39, 6153-6161, 2005.

Scheer, V., U. Kirchner, R. Casati, R. Vogt, B. Wehner, S. Philippin, A. Wiedensohler, N. Hock, J. Schneider, S. Weimer, S. Borrmann, Composition of semi-volatile particles from diesel exhaust, SAE 2005-01-0197.

Schneider, J., S. Borrmann, A. G. Wollny, M. Bläsner, N. Mihalopoulos, K. Oikonomou, J. Sciare, A. Teller, Z. Levin, D. R. Worsnop, Online mass spectrometric aerosol measurements during the MINOS campaign (Crete, August 2001), Atmos. Chem. Phys., 4, 65-80, 2004.

Theses based on the Quadrupole AMS:

Nele Hock, Massenspektrometrische in-situ Messungen zur Bestimmung der chemischen Zusammensetzung von natürlichem und anthropogenem Aerosol, Ph.D. Thesis, (German), University Mainz, 2005.

Silke Henseler, Charakterisierung der aerodynamischen Größenbestimmung des flugzeuggetragenen Aerosol-Massenspektrometers AMS, Masters Thesis (in German), University Mainz, 2003.

Silke Weimer, Untersuchungen zum Nachweis von Ruß- und Dieselabgaspartikeln am Aerodyne Aerosolmassenspektrometer, Masters Thesis ( in German), University Mainz, 2003.

Zur Redakteursansicht